Development and comparison of the DTM, the DOM and the FVM formulations for the short-pulse laser transport through a participating medium
نویسندگان
چکیده
The present article deals with the analysis of transient radiative transfer caused by a short-pulse laser irradiation on a participating medium. A general formulation of the governing transient radiative transfer equation applicable to a 3-D Cartesian enclosure has been presented. To solve the transient radiative transfer equation, formulations have been presented for the three commonly used methods in the study of radiative heat transfer, viz., the discrete transfer method, the discrete ordinate method and the finite volume method. To show the uniformity in the formulations in the three methods, the intensity directions and the angular quadrature schemes for computing the incident radiation and heat flux have been taken the same. To validate the formulations and to compare the performance of the three methods, effect of a square short-pulse laser having pulse-width of the order of a femtosecond on transmittance and reflectance signals in case of an absorbing and scattering planar layer has been studied. Effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor and the laser properties such as the pulse-width and the angle of incidence on the transmittance and the reflectance signals have been compared. In all the cases, results of the three methods were found to compare very well with each other. Computationally, the discrete ordinate method was found to be the most efficient. 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Nonlocal thermoelastic semi-infinite medium with variable thermal conductivity due to a laser short-pulse
In this article, the thermoelastic interactions in an isotropic and homogeneous semi-infinite medium with variable thermal conductivity caused by an ultra-short pulsed laser heating based on the linear nonlocal theory of elasticity has been considered. We consider that the thermal conductivity of the material is dependent on the temperature. The surface of the surrounding plane of the medium is...
متن کاملInfluence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملشبیهسازی ذرهای شتاب دادن الکترونها در پلاسمای کم چگال
One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...
متن کاملFinite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملImproved Treatment of Anisotropic Scattering for Ultrafast Radiative Transfer Analysis
The necessity of conserving both scattered energy and asymmetry factor for ballistic incidence after either FVM or DOM discretization is convincingly shown by analyzing ultrafast laser radiative transfer in a cubic enclosure housing a participating medium. A phase-function normalization technique introduced previously by the present authors to correct for non-conservation of energy and asymmetr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006